Jiang's blog

数据结构学习笔记---散列表

Word count: 4.7kReading time: 16 min
2020/04/01 Share

学习自极客时间的《数据结构与算法之美》 作者:王争

散列表

散列表,又叫哈希表(Hash Table),是能够通过给定的关键字的值直接访问到具体对应的值的一个数据结构。也就是说,把关键字映射到一个表中的位置来直接访问记录,以加快访问速度。
散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。

1. 散列思想

散列的思想, 其实就是利用数组的随机访问特性, 将key-value形式的数据, 其中的key转换成数组下标, 即可实现将其存放到数组中, 进而实现随机访问.
散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。

2. 散列函数

散列函数,顾名思义,它是一个函数。我们可以把它定义成 hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。
散列函数设计的基本要求:

  • 散列函数计算得出的值是一个正整数(数组下标嘛)
  • 若key相等, 则计算后的哈希值相等
  • 若key不相等, 则计算后的哈希值不相等,在真实的情况下,要想找到一个不同的 key 对应的散列值都不一样的散列函数,几乎是不可能的。即便像业界著名的MD5、SHA、CRC等哈希算法,也无法完全避免这种散列冲突。而且,因为数组的存储空间有限,也会加大散列冲突的概率。

2.1 构造散列函数的方法

散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算时间,也就间接的影响到散列表的性能。其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。

  • 直接定址法:取关键字或关键字的某个线性函数值为散列地址。即 hash(k) = k 或 hash(k) = a * k + b, 其中ab为常数(这种散列函数叫做自身函数)
  • 数字分析法:通过对数据的分析,发现数据中冲突较少的部分,并构造散列地址。假设关键字是以r为基的数,并且哈希表中可能出现的关键字都是事先知道的,则可取关键字的若干数位组成哈希地址。例如同学们的学号,通常同一届学生的学号,其中前面的部分差别不太大,所以用后面的部分来构造散列地址。
  • 平方取中法:当无法确定关键字里哪几位的分布相对比较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为散列地址。这是因为:计算平方之后的中间几位和关键字中的每一位都相关,所以不同的关键字会以较高的概率产生不同的散列地址。
  • 取随机数法:使用一个随机函数,取关键字的随机值作为散列地址,这种方式通常用于关键字长度不同的场合。
  • 折叠法:将关键字分割成位数相同的几部分(最后一部分的位数可以不同),然后取这几部分的叠加和(舍去进位)作为哈希地址。
  • 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 hash(k) = k mod p, p <= m。不仅可以对关键字直接取模,也可在折叠法、平方取中法等运算之后取模。对的选择很重要,一般取素数或,若选择不好,容易产生冲突。

3. 散列冲突

(一) 开放寻址法

开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。

(1) 线性探测法

  • 插入: 当我们往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
  • 查找: 我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置,还没有找到,就说明要查找的元素并没有在散列表中。
  • 删除: 但是, 删除操作就比较麻烦了, 因为查找是通过空位来判断的, 若直接删除key, 就会在下次查找时出现空位而打断本来应该继续的查找. 对于这种情况, 我们可以将删除的空位标记为delete, 查找时遇到delete不会中断就好了.
    G8rDbV.png

线性探测法其实存在很大问题。当散列表中插入的数据越来越多时,散列冲突发生的可能性就会越来越大,空闲位置会越来越少,线性探测的时间就会越来越久。极端情况下,我们可能需要探测整个散列表,所以最坏情况下的时间复杂度为 O(n)。同理,在删除和查找时,也有可能会线性探测整张散列表,才能找到要查找或者删除的数据。

对于开放寻址冲突解决方法,除了线性探测方法之外,还有另外两种比较经典的探测方法,二次探测(Quadratic probing)和双重散列(Double hashing)。

(2) 二次探测(Quadratic probing)

所谓二次探测,跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0,hash(key)+12,hash(key)+22……

(3) 双重散列(Double hashing)

所谓双重散列,意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。

(二) 链表法

使用链表法来解决哈希冲突相对来说更为常见一些, Java中的HashMap就是这么处理的。

G8ynOI.png

  • 当插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是 O(1)。当查找、删除一个元素时,我们同样通过散列函数计算出对应的槽,然后遍历链表查找或者删除。
  • 查找或删除操作的时间复杂度跟链表的长度 k 成正比,也就是 O(k)。对于散列比较均匀的散列函数来说,理论上讲,k=n/m,其中 n 表示散列中数据的个数,m 表示散列表中“槽”的个数。

(三) 再哈希法

在产生冲突之后,使用关键字的其他部分继续计算地址,如果还是有冲突,则继续使用其他部分再计算地址。这种方式的缺点是时间增加了。

(四) 建立一个公共溢出区

这种方式是建立一个公共溢出区,当地址存在冲突时,把新的地址放在公共溢出区里。

装载因子

当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。

散列表的装载因子=填入表中的元素个数/散列表的长度

装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。

问题思考

1, Word 文档中单词拼写检查功能是如何实现的?

  • 常用的英文单词有 20 万个左右,假设单词的平均长度是 10 个字母,平均一个单词占用 10 个字节的内存空间,那 20 万英文单词大约占 2MB 的存储空间,就算放大 10 倍也就是 20MB。对于现在的计算机来说,这个大小完全可以放在内存里面。所以我们可以用散列表来存储整个英文单词词典。
  • 当用户输入某个英文单词时,我们拿用户输入的单词去散列表中查找。如果查到,则说明拼写正确;如果没有查到,则说明拼写可能有误,给予提示。借助散列表这种数据结构,我们就可以轻松实现快速判断是否存在拼写错误

2, 假设我们有 10 万条 URL 访问日志,如何按照访问次数给 URL 排序?

  • 遍历 10 万条数据,以 URL 为 key,访问次数为 value,存入散列表,同时记录下访问次数的最大值 K,时间复杂度 O(N)。
  • 如果 K 不是很大,可以使用桶排序,时间复杂度 O(N)。如果 K 非常大(比如大于 10 万),就使用快速排序,复杂度 O(NlogN)。

3, 有两个字符串数组,每个数组大约有 10 万条字符串,如何快速找出两个数组中相同的字符串?

  • 以第一个字符串数组构建散列表,key 为字符串,value 为出现次数。再遍历第二个字符串数组,以字符串为 key 在散列表中查找,如果 value 大于零,说明存在相同字符串。时间复杂度 O(N)。

4. 如何解决装载因子过大的问题

对于动态散列表来说,数据集合是频繁变动的,我们事先无法预估将要加入的数据个数,所以我们也无法事先申请一个足够大的散列表。随着数据慢慢加入,装载因子就会慢慢变大。当装载因子大到一定程度之后,散列冲突就会变得不可接受。

针对散列表,当装载因子过大时,我们也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。假设每次扩容我们都申请一个原来散列表大小两倍的空间。如果原来散列表的装载因子是 0.8,那经过扩容之后,新散列表的装载因子就下降为原来的一半,变成了 0.4。

针对数组的扩容,数据搬移操作比较简单。但是,针对散列表的扩容,数据搬移操作要复杂很多。因为散列表的大小变了,数据的存储位置也变了,所以我们需要通过散列函数重新计算每个数据的存储位置。

G8gCmn.png

插入一个数据,最好情况下,不需要扩容,最好时间复杂度是 O(1)。最坏情况下,散列表装载因子过高,启动扩容,我们需要重新申请内存空间,重新计算哈希位置,并且搬移数据,所以时间复杂度是 O(n)。用摊还分析法,均摊情况下,时间复杂度接近最好情况,就是 O(1)。
对于动态散列表,随着数据的删除,散列表中的数据会越来越少,空闲空间会越来越多。如果我们对空间消耗非常敏感,我们可以在装载因子小于某个值之后,启动动态缩容。

高效扩容

如果散列表当前大小为 1GB,要想扩容为原来的两倍大小,那就需要对 1GB 的数据重新计算哈希值,并且从原来的散列表搬移到新的散列表,这会非常的耗时。

为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。

当有新数据要插入时,我们将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。

5. 选择冲突解决方法

1, 开放寻址法

  • 用开放寻址法解决冲突的散列表,删除数据的时候比较麻烦,需要特殊标记已经删除掉的数据。而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。所以,使用开放寻址法解决冲突的散列表,装载因子的上限不能太大。
  • 当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。

2,链表法

  • 链表法比起开放寻址法,对大装载因子的容忍度更高。开放寻址法只能适用装载因子小于 1 的情况。接近 1 时,就可能会有大量的散列冲突,导致大量的探测、再散列等,性能会下降很多。但是对于链表法来说,只要散列函数的值随机均匀,即便装载因子变成 10,也就是链表的长度变长了而已,虽然查找效率有所下降,但是比起顺序查找还是快很多。
  • ** 对链表法稍加改造,可以实现一个更加高效的散列表。那就是,我们将链表法中的链表改造为其他高效的动态数据结构,比如跳表、红黑树**。这样,即便出现散列冲突,极端情况下,所有的数据都散列到同一个桶内,那最终退化成的散列表的查找时间也只不过是 O(logn)。
  • 基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。

Java中的HashMap

1. 初始大小
HashMap 默认的初始大小是 16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。

2. 装载因子和动态扩容
最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacity(capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。

3. 散列冲突解决方法
HashMap 底层采用链表法来解决冲突。即使负载因子和散列函数设计得再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响 HashMap 的性能。
当链表长度太长(默认超过 8)时,链表就转换为红黑树。我们可以利用红黑树快速增删改查的特点,提高 HashMap 的性能。当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能上的优势并不明显。

4. 散列函数

1
2
3
4
5

static final int hash(Object key) {
int hash;
return key == null ? 0 : (hash = key.hashCode()) ^ hash >>> 16;
}

其中,hashCode() 返回的是 Java 对象的 hash code。比如 String 类型的对象的 hashCode() 就是下面这样:

1
2
3
4
5
6
7
8
9
10
11
12

public int hashCode() {
int var1 = this.hash;
if(var1 == 0 && this.value.length > 0) {
char[] var2 = this.value;
for(int var3 = 0; var3 < this.value.length; ++var3) {
var1 = 31 * var1 + var2[var3];
}
this.hash = var1;
}
return var1;
}

在插入或查找的时候,计算Key被映射到桶的位置:

1
int index = hash(key) & (capacity - 1)
  1. 首先hashcode本身是个32位整型值,在系统中,这个值对于不同的对象必须保证唯一(JAVA规范),这也是大家常说的,重写equals必须重写hashcode的重要原因。

  2. 获取对象的hashcode以后,先进行移位运算,然后再和自己做异或运算,即:hashcode ^ (hashcode >>> 16),这一步甚是巧妙,是将高16位移到低16位,这样计算出来的整型值将“具有”高位和低位的性质

  3. 最后,用hash表当前的容量减去一,再和刚刚计算出来的整型值做位与运算。进行位与运算,很好理解,是为了计算出数组中的位置。但这里有个问题:
    为什么要用容量减去一?
    因为 A % B = A & (B - 1),所以,(h ^ (h >>> 16)) & (capitity -1) = (h ^ (h >>> 16)) % capitity,可以看出这里本质上是使用了「除留余数法」

  4. 综上,可以看出,hashcode的随机性,加上移位异或算法,得到一个非常随机的hash值,再通过「除留余数法」,得到index,

CATALOG
  1. 1. 散列表
    1. 1.1. 1. 散列思想
    2. 1.2. 2. 散列函数
      1. 1.2.1. 2.1 构造散列函数的方法
    3. 1.3. 3. 散列冲突
      1. 1.3.1. (一) 开放寻址法
        1. 1.3.1.1. (1) 线性探测法
        2. 1.3.1.2. (2) 二次探测(Quadratic probing)
        3. 1.3.1.3. (3) 双重散列(Double hashing)
      2. 1.3.2. (二) 链表法
      3. 1.3.3. (三) 再哈希法
      4. 1.3.4. (四) 建立一个公共溢出区
      5. 1.3.5. 装载因子
    4. 1.4. 问题思考
    5. 1.5. 4. 如何解决装载因子过大的问题
      1. 1.5.1. 高效扩容
    6. 1.6. 5. 选择冲突解决方法
  2. 2. Java中的HashMap